Predicting phosphorescent lifetimes and zero-field splitting of organometallic complexes with time-dependent density functional theory including spin-orbit coupling.
نویسندگان
چکیده
The (photo)physical properties of organometallic complexes are crucially affected by relativistic effects. In a non- or scalar-relativistic picture, triplet states are threefold degenerate. Spin-orbit coupling lifts this degeneracy (zero-field splitting, ZFS) and enables phosphorescence from the three triplet-like states to the ground state. The fine structure and radiative lifetimes of phosphorescent organometallic complexes are important properties for designing efficient organic light-emitting diodes (OLEDs). Here we show that experimental ZFSs and phosphorescent lifetimes for a large variety of organometallic complexes are well reproduced by self-consistent spin-orbit coupling TDDFT (SOC-TDDFT) calculations with a continuum solvation model. By comparing with perturbative SOC-TDDFT and gas phase calculations, we find that both full spin-orbit and solvation effects are important for the predicted properties. SOC-TDDFT is thus shown to be a useful predictive tool for the rational design of phosphors in OLEDs and other optoelectronic devices.
منابع مشابه
The effect of substituted 1,2,4-triazole moiety on the emission, phosphorescent properties of the blue emitting heteroleptic iridium(III) complexes and the OLED performance: a theoretical study.
A series of neutral heteroleptic mononuclear iridium(III) complexes was investigated using the density functional theory/time-dependent density functional theory approach to determine the effect of the substituted 1,2,4-triazole moiety on the electronic structures, emission, and phosphorescent properties and the organic light emitting diode (OLED) performance. The results reveal that substituti...
متن کاملThreshold suppression of Λ spin-orbit splitting
New experimental data on medium to heavy single Λ hypernuclei revealed a much larger spin-orbit splitting than observed in older measurements of light hypernuclei. Taking into account particle threshold effects and the density-dependence of inmedium coupling constants the apparent suppression of spin-orbit strength in light hypernuclei as well as the spin-orbit structure observed in medium to h...
متن کاملGiant spin-orbit-induced spin splitting in two-dimensional transition-metal dichalcogenide semiconductors
Fully relativistic first-principles calculations based on density functional theory are performed to study the spin-orbit-induced spin splitting in monolayer systems of the transition-metal dichalcogenides MoS2, MoSe2, WS2, and WSe2. All these systems are identified as direct-band-gap semiconductors. Giant spin splittings of 148–456 meV result from missing inversion symmetry. Full out-of-plane ...
متن کاملUltrafast Luminescence Decay in Rhenium(I) Complexes with Imidazo[4,5-f]-1,10-Phenanthroline Ligands: TDDFT Method
The interpretation of the ultrafast luminescence decay in [Re(Br(CO)3(N^N)] complexes as a new group of chromophoric imidazo[4,5-f]-1,10-phenanthroline ligands, including 1,2-dimethoxy benzene, tert-butyl benzene (L4) and 1,2,3-trimethoxy benzene, tert-butyl benzene (L6), was studied. Fac-[Re(Br(CO)3L4 and L6] with different aryl groups were calculated in singlet and triplet excited states. The...
متن کاملاثر برهمکنش اسپین مدار یکنواخت و میدان مغناطیسی یکنواخت بر خواص توپولوژیکی یک نانو سیم یک بعدی کوانتومی
We theoretically demonstrate the interplay of uniform spin-orbit coupling and uniform Zeeman magnetic field on the topological properties of one-dimensional double well nano wire which is known as Su-Schrieffer-Heeger (SSH) model. The system in the absence of Zeeman magnetic field and presence of uniform spin-orbit coupling exhibits topologically trivial/non–trivial insulator depending on the h...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Physical chemistry chemical physics : PCCP
دوره 16 28 شماره
صفحات -
تاریخ انتشار 2014